热线电话:

厦门哲讯电气自动化有限公司

主营:PLC可编程控制器模块,DCS卡件,ES...

商铺首页 > 新闻动态 > 0001AF02A40B
厦门哲讯电气自动化有限公司
7
企业等级: 普通会员
经营模式:
所在地区: 福建 厦门
联系卖家:    QQ在线咨询1982497648
手机号码:
公司官网: shop432522607.t...
公司地址:

0001AF02A40B

发布时间:2019-09-04 07:13:12        

MOTOROLA  0001AF02A40B

  引言
    在仪表校准中,希望直流电压源或电流源的精度与分辨率足够高,因为这是仪表能否校准好的关键所在。然而,单纯使用单个DAC的方法不仅成本高,而且各项性能并不能得到保证,因此,本文提出了一种使用一个双通道DAC来实现
    <高精度直流电压/电流源的方法,即一个通道实现高精度要求,另一个通道实现动态范围要求。这样不仅节约了成本,精度也达到了要求。
    系统设计实现
    设计的思路是先产生一个分辨率为0.02mV、动态范围为0~2.5V的标准电压信号Vstand,然后通过放大电路将该基本电压放大5倍,就可以得到0~12.5V、分辨率为0.1mV的直流电压,从而实现高精度的电压源。而动态范围为0~20mA、分辨率为0.001mA的高精度电流源则是通过将Vstand接到场效应管的栅极来控制其漏极电流而得到。因此,该设计中***核心的部分是标准电压信号Vstand的产生。
    Vstand的产生
    本设计使用的是双12位D***TC1590。Vstand的产生如图1所示。
 
    D/A1、D/A2分别代表LTC1590中两个***的、精度都为12位的DAC。参考电压都采用AD780提供的2.5V电压。
    D/A1用来提供粗调电压V1。D/A2输出的电压V2经过衰减200倍后得到精调电压V2’’,中间所加的精密数字电位器起调节V2’’分辨率的作用,***后精调电压与粗调电压相加,便得到标准电压Vstand。
    精密数字电位器采用的是8位256档的AD8400,设K为AD8400的调节比例(0≤K≤1),可以得到:V2‘=V2×K
    于是V1分辨率===0.61035(mV)≈0.61(mV),V2‘‘分辨率=≈0.003K(mV)
    则V1=V1分辨率×N,V2‘‘=V2‘‘分辨率×M(N,M为0~4096的整数)
    ***终的输出电压V为V1、V2‘’之和放大5倍,于是有:V=5Vstand=(V1+V2‘’)×5=(V1分辨率×N+V2‘‘分辨率×M)×5
    由于V1是粗调电压,解决的是V的动态范围问题,而V的***小分辨率是由细调电压V2‘’决定的,所以:
    V的分辨率=V分辨率=5×V2‘‘分辨率=0.003K×5=0.015K(mV)
    由以上分析可知:使用这种方式得到的V的输出动态范围可以达到0~12.5V,而分辨率约为0.015KmV,若K=1(即不采用AD8400),0.015mV与0.1mV不构成整数倍关系,单纯的由程序控制不能达到0.1mV的分辨率要求。这就是为什么要采用精密数字电位器的原因。
 
    当K=时,可以得到电压V的分辨率=0.015K=0.01mV。
    这样就从理论上得到了***后输出的电压源的分辨率可以达到0.01mV,不仅可以满足系统的0.1mV分辨率要求,还留有充足的余量,使得V的输出可以通过对精密数字电位器以及D/A2的
    软件修正来进行校准,从而避免由于元器件温度漂移、D/A转换非线性误差等对输出造成的影响。
    产生Vstand的电路如图2所示,Vstand在图中是网络标号STAND_VOL所代表的信号。
    高精度电压V的产生
    为了保证精度,整个系统的电路中所使用的运算放大器都采用高精度运放OPA2277。
    硬件电路搭好之后,通过单片机程序将AD8400的值设为(向AD8400的寄存器写数据),然后通过算法将预输出的电压值分别拆分成D/A1、D/A2各自需要输出的电压,再将值写入LTC1590的寄存器中,便可从输出端得到直流电压V(限于篇幅,Vstand5倍放大得到V的电路图省略)。
    高精度电流I的产生
    电流源的实现依然是使用Vstand,其电路如图3所示。
 
    此处不是利用MOSFET的转移特性,而是采用电压反馈的方式进行电流控制。在场效应管的漏极与源极间加上24V的电压(由系统的其它模块提供,限于篇幅不作说明),与外部所接负载构成回路后,漏极电流便成为电流源的输出电流。设输出电流为I,则U8的引脚3引入的采样电压为10I,经过10倍放大后变为100I引入引脚6,由于5与6处的电压值相等,所以Vstand=100I(Vstand的***大输出为2.5V,而I要求其输出范围为0~20mA,所以100倍的关系比较合适),由于Vstand的分辨率=V2‘‘分辨率=0.002mV,理论上I的分辨率可以达到0.000002mA,完全可以满足预计的0.001mA分辨率要求(Vstand以0.1mV的步进改变即可),于是高精度电流源得以实现。
    测试实验
    按照以上的高精度电压与电流的产生方法进行硬件设计,再加上键盘与液晶显示器等模块,利用单片机控制,便可构成一个简易的、可以提供高精度直流电压与电流的仪表(限于篇幅,其它模块与程序设计不作说明)。
    系统定标
    由于本系统是精密仪表设备。因此,必须采用定标消除系统误差。由于在本设计中MCU采用的是SST公司生产的89E58RC单片机。这种单片机为用户提供了强大的IAP(InApplicationProgram)功能,并有8KflashROM用于存储数据。通过IAP,系统可以提取校准数据,并将数据存储,在仪表输出电压/电流时就可以先提取相应的校准数据进行预处理。这样就保证了该系统的精度。
    测试试验
    定标后,采用安捷伦公司的3485A进行测试。表1与表2分别为测试的电压输出与电流输出的实验数据。
    结语
    综上分析可知,本文所提出的宽动态范围、高分辨率的高精度直流电压/电流源的设计方法是切实可行的,同时,此设计方法节约了成本。
  引言
    随着电子技术的进步,数字电视也得到了迅猛发展,其中视频数字编***芯片是它的核心部件,而ADC又是影响其性能的关键模块,因此设计高性能的模拟前端ADC成为IC设计的挑战。本文设计了一种在12位精度、80MHz采样率的ADC中负责采样保持的核心电路—运算跨导放大器(OTA)。
    运放结构的选择
    根据ADC的要求可以推算出运放的性能指标,如表1所示,据此可以选择运放的结构。目前常见的三种基本的运算放大器结构如图1所示。图1(a)是简单的两级运放,它具有大的输出摆幅2(Vdd-2Vds,sat),但频率特性差,一般用Miller法补偿,使得相位裕度变小,但会导致电路稳定性变差。另一种改进的补偿方式是增加调零电阻R2=1/Cc(1/gmb-R),但由于工艺的不稳定性,难以得到***的电阻值。图1(b)是套筒式运放,整个电路可以看成是单极点系统,无需补偿,因此频率特性好;又因为它只有2条主支路,因此功耗低,但输入/输出摆幅小。图1(c)是折叠式共源共栅结构,它改进了套筒式输入/输出摆幅小的缺点,但存在4条主支路,功耗大且稳定性变差。综上所述,本文结合图1(b)、(c)的优点,设计了全差分套筒式增益增强型运放,如图2所示,它能满足高增益带宽、低功耗等设计要求。
 
    电路原理分析
    增益倍增
    为了提高增益,在共源共栅结构上附加辅助运算放大器,如图3所示,可以增强共源共栅效应。辅助运放的放大倍数为Aadd,通过减小由输出到输入管漏极的反馈,输出可增大Aadd倍,也即等效于:Rout≈(gm2***2(Aadd+1)+1)***1+***2。其中,gm2是M2管跨导,***1与***2分别为M1与M2的输出阻抗。因此电路的直流增益也会增大同样的倍数,***=gm1Rout≈-gm1***1(gm2***2(Aadd+1)+1)。
    同理,给图2中的套筒式主运放加上辅助运放后,其直流增益可提高为***=-gm1[(gm5***5***7Aadd_p)//(gm3***3(***9//***1)Aadd_n)],式中Aadd_n和Aadd_p分别是辅助运放A_n和A_p的放大倍数。图4中示出了n型辅助运放A_p的结构。
    p型辅助运放A_n用于推进主运放的M3、M4管,n型辅助运放A_p用于推进主运放的M5、M6管。辅助运放采用折叠式结构,不需要太快的速度和建立时间,因此其尾电流取为主运放的1/10,大大降低了整个电路的功耗和面积。
 
    频率响应分析
    图2中全差分套筒式共源共栅运放的主极点在P1点,频率为wp1=-1/RoutCL;次极点位于P2或P3点。通常由于p管的迁移率比n管的迁移率小,因此p管的过驱动电压较大,导致宽长比W/L也较大,即P2点的电容比P3的电容大。因此可以认为P2点为次主极点,wp2=-gm5/Cp,其中gm5为M5管的跨导,Cp主要包括M5管的栅源电容Cgs和M3管的栅漏电容Cgd。而主运放的单位增益频率为wu=gm1/CL,其中gm1为M1管的跨导。当加入辅助运放时,附加的增益部分与M5管形成闭环,若附加增益部分速度太快,电路就可能变得不稳定。又因为辅助运放增加了一对零极点wdoublet,如果设计不好,就会严重影响运放的建立特性。因此应使这对零极点尽量靠近,并且尽量远离主运放的单位增益频率,同时还要小于主运放的次主极点,即:bWu瞱doublet瞱p,其中b是闭环反馈系数。
 
    主运放和辅助运放的设计方法
    在设计套筒式共源共栅主运放时,首先根据***大输出摆幅的要求,分配过驱动电压Vod并设置静态工作点。由图可得:Vout,max=Vdd-(|Vod7|+|Vod5|),Vout,min=Vod9+Vod1+Vod3,设输出摆幅为1.5V,则|Vod7|+|Vod5|+Vod9+Vod1+Vod3=3.3-1.5=1.8V,由于p管M7、M5的迁移率低,给它们均分配0.45V的过驱动电压,剩余的平均分配给***、M1、M3各0.3V。再由阀值电压公式Vgs=Vt+Vod知:允许的***小输入共模电平等于Vgs1+Vod9=1V,VB1的***小值为Vgs3+Vod1+Vod9=1.3V,Vod5的***大值为:VDD-(|Vgs5|+|Vod7|)=1.6V。因此,综合考虑合理设置其偏置电压VB4、VIN、VG3、VG5、VB1分别为:0.8V、1.2V、1.79V、1.6V、2.21V。
    在进行电路设计时,首先需要手工估算宽长比W/L,这可以根据CMOS管饱和电流公式IDS=Kn(W/L)(VGS-VTN)2(1+lVDS)得到,式中器件跨导参数Kn=UnCox,l=,其中Cox为单位面积的氧化层电容,N为衬底掺杂浓度,Un为n沟道器件的表面迁移率。同理可计算P管参数。
    折叠式共源共栅辅助运放的设计方法如表2所示,其中设宽长比Sn=(W/L)n。
 
    仿真验证和结论
    在Cadence的Spectre平台下,本设计采用T***C公司的0.35mmCMOS工艺模型,在3.3V电源电压下,分别在tt(典型)、sf(慢NMOS,快PMOS)、ff(快NMOS,快PMOS)3种工艺条件下对所设计的运放进行了仿真。仿真结果表明,本文采用的增益增强型套筒式共源共栅结构的全差分CMOS运算放大器具有110dB的直流开环增益,320MHz的增益带宽,65?南辔辉6龋?拱诼蚀笥?00V/ms,建立时间小于6ns,功耗小于5.7mW。
    结语
    本文对增益提高技术的原理和全差分套筒式共源共栅运算放大器进行了分析,在此基础上设计了一个带增益提升的全差分折叠式共源共栅运算放大器,它能有效地提高增益,同时对
    运算放大器的速度及稳定性等影响很小。因此,该运放达到了设计性能的要求,可以运用于高速、高精度的ADC等。
 
免责声明
• 本文仅代表作者个人观点,本站未对其内容进行核实,请读者仅做参考,如若文中涉及有违公德、触犯法律的内容,一经发现,立即删除,作者需自行承担相应责任。涉及到版权或其他问题,请及时联系我们 304108043@qq.com
  • QQ在线咨询1982497648
  • 手机:
  • 联系我时务必告知是在产品网上看到的!

厦门哲讯电气自动化有限公司

商铺|诚信档案

地址:

电话:传真:

免责声明:以上信息由会员自行提供,内容的真实性、准确性和合法性由发布会员负责,产品网对此不承担任何责任。产品网不涉及用户间因交易而产生的法律关系及法律纠纷, 纠纷由您自行协商解决。

风险提醒:本网站仅作为用户寻找交易对象,就货物和服务的交易进行协商,以及获取各类与贸易相关的服务信息的平台。为避免产生购买风险,建议您在购买相关产品前务必 确认供应商资质及产品质量。过低的价格、夸张的描述、私人银行账户等都有可能是虚假信息,请采购商谨慎对待,谨防欺诈,对于任何付款行为请您慎重抉择!如您遇到欺诈 等不诚信行为,请您立即与产品网联系,如查证属实,产品网会对该企业商铺做注销处理,但产品网不对您因此造成的损失承担责任!

联系:304108043@qq.com是处理侵权投诉的专用邮箱,在您的合法权益受到侵害时,欢迎您向该邮箱发送邮件,我们会在3个工作日内给您答复,感谢您对我们的关注与支持!

商铺首页 | 公司概况 | 供应信息 | 新闻动态 | 诚信档案 | 联系我们 |

厦门哲讯电气自动化有限公司 电话: 传真: 联系人:

地址: 主营产品:PLC可编程控制器模块,DCS卡件,ESD系统卡件,振动监测系统卡件,汽轮机控制系统模块,燃气发电机备件

Copyright © 2025 版权所有: 产品网

免责声明:以上所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责。产品网对此不承担任何保证责任。

商盟客服

您好,欢迎莅临,欢迎咨询...